Vol. 18 No. 4

CHINESE JOURNAL OF CHEMISTRY

Geometry optimizations of benzene clusters using a modified

genetic algorithm

CAI, Wen-Sheng* '° (& X £)

. YU, Fang®*(T %)
PAN, Zhong-Xiao® (% &%)

SHAO, Xue-Guang® (#f %))

¢ Department of Applied Chemistry , University of Science and Technology of China, Hefei 230026, Anhui, China
b Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China

A modified genetic algorithm with real-number coding, non-
uniform mutation and arithmetical crossover operators was
described in this paper. A local minimization was used to im-
prove the final solution obtained by the genetic algorithm. Us-
ing the exp-6-1 interatomic energy function, the modified ge-
netic algorithm with local minimization (MGALM) was ap-
plied to the geometry optimization problem of small benzene
clusters (CgHy) y (N = 2—7) to obtain the global minimum
energy structures. MGALM is simple but the structures opti-
mized are comparable to the published results obtained by
parallel genetic algorithms.
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Introduction

Determination of the lowest energy configurations of
molecular clusters is prohibitively difficult in computa-
tional chemistry due to the large number of local minima
which even small molecular clusters possess. And the
number of subsidiary minima increases exponentially with
the number of molecules in clusters, making it a member
of NP-hard problems. In order to solve the problem,
Williams developed several methods such as the Newton-
Raphson local optimization with assumption of a center of
symmetry,! and the off-ridge eigenvector minimization
with annealing (OREMWA ) without the above assump-
tion which is capable of starting from subsidiary minima
and proceeding to global minima.? Van de Waal investi-
gated structures of small benzene clusters by starting with
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an icosahedral 13-cluster and removing appropriate
molecules from the icosahedron.>

As a powerful stochastic search strategy, genetic
algorithms ( GAs) have been tried in optimizing the
structures of clusters. Williams proposed a binary-coded
genetic algorithm (GAME) to obtain the global energy
minimum of the dimer structures of benzene, naphtha-
lene and anthracene.* Niesse carried out global optimiza-
tion of atomic Ar clusters and molecular water clusters
using the space-fixed modified genetic algorithm.® Gre-
gurick and Alexander developed a modified determinis-
tic/stochastic genetic algorithm (DS-GA) for optimiza-
tion of (Ar), and B(Ar), clusters.S Recently, an effi-
cient parallel genetic algorithm was proposed by Pullan to
predict the structures of benzene clusters.” It can find
the minimum energy structures for cluster of two to fif-
teen benzene molecules, but the restriction that the algo-
rithm can be run only on parallel computers has greatly
limited its application in structure optimization problems
since parallel machines are not generally available to all
chemists. In this study a modified genetic algorithm was
constructed to solve the task on a conventional personal
computer. The modification of the standard GA method
involves non-uniform mutation operators,® arithmetical
crossover operators® and local minimization of the best
individual at the end of generation. By comparison of the
optimized structures of benzene clusters obtained by
MGAIM with the published results obtained by the par-
allel GA and the other methods, it was shown that
MGAIM is a relatively simple but efficient algorithm that
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can be widely used in solving optimization problems.
Theory and algorithm

The most stable structure of a melecular cluster is
often the geometry with the lowest potential energy. Be-
cause the global minimum structure lies in a large and
complex energy hypersurface, many stochastic searching
techniques have been tried to search for the most stable
structure, such as random search, Monte-Carlo,’ simu-
lated annealing,’ evolutionary programming,'® and ge-
netic algorithm. '®!! Among them, the genetic algorithm
is much simpler to implement. Initially, a random popu-
lation of individuals is created, and then it is evaluated
by a fitness function. Only the fitter individuals are al-
lowed to survive and are selected as the parents for the
next generation. The fitter individuals passed their ge-
netic information onto the next generation through
crossover and mutation operations. This process is re-
peated until the best individual (solution) is found.

The fimess function is the key factor in a GA. It
determines the performance of a GA. In the geometry
optimization problem of benzene clusters, we choose the
potential energy of each geometry as a measure of fit-
ness. The individual is evaluated and selected according
to this criterion. The evolution of the genetic algorithm is
thus straight forwardly directed to lower the potential en-
ergy till the global minimum is located.

With the assumption that the benzene molecule be a
rigid planar structure, only the intermolecular nonbond
interactions including van der Waals interactions and
electrostatic interactions are considered. The exp-6-1 in-
teratomic energy function for calculating the potential en-
ergy® is adopted:

v(r;) = Bexp(- Cry) - Ary® + qigr} (1)

N-1 N

V= >0 v(ry) (2)

m=1 n=m+1

where, V is the sum of all nonbonded pair potentials be-
tween N benzene molecules, v( r,;) is the potential ener-
gy of the interacting atom pair (atom i of molecule m
and atom j of molecule n at distance r;) . Eq. (1) de-
scribes nonbonded interactions as repulsion interaction,
dispersion interaction and Coulombic interaction, where
B and C are the exchange repulsion coefficients, A is

the dispersion energy coefficient and ¢;, g; are the net
atomic charges for atom i and j. The numeric value of
these coefficients are associated with the type of atoms
involved in the interaction. In this study, for H- H,
H-C, C- C interactions, A is 1.36 x 10*, 5.73 x
10* and 2.414 x 102 kJ-mol™ - nm®, respectively, B is
11677, 65485 and 367250 kJ-mol !, respectively, C is
0.374, 0.367 and 0.360 nm’ respectively. The net
atomic charges for H and C are 0.153e and - 0.153e,
respectively. These values for parameters A, B, C and
q were obtained by Williams'? and used in the previous
studies.'™ 7 The distance of C—C and C—H in the
benzene molecule is 0.1397 and 0.1027 nm, respec-
tively.

Each geometry of an N molecule benzene cluster is
represented by a chromosome with the following struc-
ture,
typedef struct!

float x;
float y;
float z;
float 8
float ¢;
float ¢
| GENE;
typedef struct|
GENE chrome [ nChrome ]; //nChrome
=N-1
float fitness; // fitness of individual
| CHROME;

Here, each gene represents a benzene molecule,
the first three parameters of each gene x, y, z are the
translation parameters which specify the center of the
molecule. The other three parameters 8, ¢, ¢ are Eu-
ler angles which specify the molecular orientation. Since
the first molecule in a cluster is fixed in the space to de-
fine the coordinate system (the same atomic coordinates
as in Ref. 6 are used in our study), therefore for an N
molecule benzene cluster, only NV -1 genes, i.e., 6N
— 6 parameters are used to fully specify the cluster. All
these parameters are encoded in a real-value interval [0,
1], when decoding, the three translation parameters are
decoded back to interval [ - 8.0,8.0], while the Euler
angle § is decoded back to interval [0, 7], and the oth-
er two angles $ and ¢ are both decoded back to interval
[0,27x]. This real-value encoding is a plausible encod-
ing strategy that is superior to binary encoding in opti-
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mization problems proven by Deaven’s work.

Besides the real-value encoding strategy, our
MGAILM has other modifications of standard GA method
to make it more efficient. The first modification is non-
uniform mutation. It means that the search space can be
automatically adjusted as the optimization process pro-
ceeds. For the non-uniform mutation, suppose a chro-
mosome x{= (v, ", v, ***,v,) will mutate to (vy,
v;'***v,) , the value of v;’ is determined in the following

random way:

, {vk+A(t,UB—vk), random = 0
Vi =

vi — A(t, v - LB),

random = 1

(3)

where LB and UB are the lower and upper limit of v,
respectively. Function A(z,y) is selected as follows:

A(t,y) = y - [1 - 7-vD"] (4)

where r is a random number from interval [0,1], T is
the total generation number, b is a descending parame-
ter that determines the degree of mutation nonuniformity
(in this study b is 0.8). It will retum a value in the
range of [0, y] and this value is approaching zero along
with the increase of generation number . Therefore,
during the initial stage, big creep mutation giving a big
disturbance around a real number is used to enlarge the
search space. Along with the increase of the generation
number ¢, mutation creep declined gradually, and, at
the end of the evolution, little creep mutation giving a
little disturbance around a real number is used to locally
optimize the chromosome. In MGAIM, both non-uni-
form mutation and uniform mutation in a ratio of 4:1 are
used.

The second modification is arithmetical crossover.
Take two (real-valued) parent’ genes p and ¢, calcu-
late their offspring genes p’ and ¢’ as a linear combina-
tion of the parent’ genes by

p=k-p+(1-k)-gq
g =(1-k)-p+k-gq (5)

with parameter k € [0, 1]. For each individual gene
participating in the crossover, the parameter k is a uni-

formly random choice from the interval [0, 1]. The
arithmetical crossover is more appropriate in real-number
encoding genetic algorithm than other crossover methods,
which has been proven in our previous works. !5

The tournament selection mechanism based on fit-
ness is used. In addition, an elitist selection is adopted
to ensure the best chromosome for each population is
placed into the next generation unchanged, therefore the
best fitness score from one population to the next will
never decrease.

However, we cannot ensure that the GA procedure
has reached the global minimum energy. Additional
modification to the standard GA involves a local mini-
mization of the best individual of the population at the
end of generation to improve the final result. It randomly
searches a superior solution within the neighboring area
('small ranges of each parameters) of the current solution
and then replaces it. This local search procedure will be
repeated until certain stop criterion is satisfied. To as-
certain the speed of the MGALM, the local minimization
procedure is not for each member of the population at ev-
ery generation® but only for the best solution (the best
individual) in the last generation. It greatly accelerates
convergence to the global minimum.

MGAILM optimization procedures and results

The program MGAIM is written in C+ + lan-
guage, compiled with a BC compiler, and implemented
on a Pentium 233/64M.

Optimization of mathematical functions using MGA

In order to test the performance of the modified ge-
netic algorithm (MGA), both MGA and the standard GA
(SGA) procedures are applied to find the global mini-
mum of several mathematical functions with multiminima
described in Table 1. The following values of parameters
are used: the population size N, is 11, the crossover
probability P, is 0.9, and the mutation probability P,
is 0.05. Both the results over 50 runs obtained by MGA
and SGA are given in Table 2. From the average and
minimum number of function calculations and the quality
of the solutions (the stop criteria) in Table 2, it is clear
that MGA method is superior to SGA.
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Table 1 Function description

Function Equation Parameter interval Global minimum
Fl fl(x)=m4+._§_‘i[x%—Acos(27rxi)] n=5 %=0
A=8 -5.12<x5<5.12 Frin=0
n s n=5 x,-=420.9687
F2 fo(x) = —igxism( Vixl) - 500 5, <500 Fo = — 20049144
F3(x) = ky{sin®(mhyn1) +
n-1
- E(xi— ks)?[1 + kgsin®(mhyx; ,1)] n=35 %=1
+ (%, = ks)*[1 + kgsin®(rkyx,) ]} ~S=#=3 Soin =0
k3=0.1, k4=3, k5=1, k6=1, k7=2
s
f4(x19x2)={Elim[(i+l)xl+i]} 18 globalmlmma
F4 _10$x11x2510 fmin= “186.73(»

{élicos[(i+l)x2+ il}

Table 2 Comparison of MGA with SGA (The stop criteria of SGA and MGA are | £,y — fuin| <0.001,
and | fo — fuin! <0.00001, respectively. Results over 50 runs were sampled)

Number of function calculations
Function SGA (1X)° SGA (UX)® MGA®
Average Minimum Average Minimum Average Minimum
F1 1.1x 10° 11251 7.1x 10¢ 41391 9.0x 10° 5201
F2 3.7x10° 195551 2.6x10° 52481 1.3x 10 5271
F3 1.3x10* 2121 1.3x10* 2461 3.7x 10 1461
F4 1.4x 10° 29411 1.7x10° 14961 7.2x 10° 881

*Standard Genetic Algorithm using single point crossover. ® Standard Genetic Algorithm using uniform point crossover. ¢ Modified
Genetic Algorithm using arithmetic crossover and non-uniform mutation.

The local minimization for the best solutions ob-
tained by MGA will improve their quality. For F1 with
10 dimensions, twenty runs of MGALM in 5000 genera-
tions were tested. The average minima obtained by MGA
and MGALM are 2.9 x 107 and 1.1 x 103, respective-

ly.
Optimization of benzene clusters using MGALM

Investigations were performed to check the effect of
changing the global parameters for this algorithm, the
results show that the best results can be obtained with
small population size (N, = 15), a low mutation proba-
bility (P, =0.05) and a high crossover probability ( P,
=0.9).

The local minimization procedure randomly gener-
ates a new solution (x') near the current solution (x),

i.e., x€[x-gq, x+q]. If the new solution is bet-
ter than the current one, it will replace the current one
and become a new current solution. In this study, g is
0.0001. The stop criterion of the local minimization is
no improvement for the best solution in 2000 steps.

MGALM was used to study the geometry optimiza-
tion problems of small benzene clusters (CgHg) (N =
2—7). The optimized structures were obtained after
5000 generations and the local minimization procedure.
The running time for each run varied with the molecule
number N of the corresponding benzene clusters. For a
benzene dimer it only needs less than one minute to lo-
cate the global minimum, but for a 7 molecule benzene
cluster, it will take about 1 hour to find the global mini-
mum,

The global energy values of benzene clusters
(CgHg) y for N = 2—7 obtained by MGAIM are listed
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in Table 3, and the published results obtained by the inferior to parallel genetic algorithms in geometry opti-
parallel genetic algorithm and the other methods are also mization problems for small benzene clusters ( N <6),
listed in it. From the comparison of these two sets of only a very small error exists for the 7 benzene cluster.
values, it can be seen clearly that MGAIM is in no way

Table 3 Comparison of MGALM calculated energy with published results

N Energy (ref.) Energy (cal.) N Energy (ref.) Energy (cal.)
2 -11.0 -11.0 5 -79.1 -79.1
3 -32.1 -32.1 6 -106.4 -106.4
4 -55.6 ~55.6 7 -134.1 -134.0

The energy values are measured in unit kJ/mol. The reference energies are from the Refs. 2, 3 and 7.

Fig. 1 to Fig. 6 display all the energy-optimized
structures of the benzene clusters ( CgHg) y for N = 2—7
found by MGALM.

Fig. 1 Optimized structure of benzene dimer.
Fig. 3 Optimized structure of benzene tetramer.

Fig. 2 Optimized structure of benzene trimer.

Fig. 4 Optimized structure of benzene pentamer.
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Fig. 5 Optimized structure of benzene hexamer.

Fig. 6 Optimized structure of benzene septamer.

The two molecular faces in benzene dimer (Fig. 1)
have a dihedral angle of 26.3° and an intermolecular
center to center distance of 0.469 nm. In benzene trimer
(Fig. 2) all the dihedral angles are 61.1° and all the
intermolecular center to center distances are 0.498 nm.
For adjacent pair of benzene molecules in tetramer ( Fig.
3), they have dihedral angles of 77.6°, and for the dia-
metrically opposing pairs they have dihedral angles of
55.2°, the respective intermolecular distances are 0.504
and 0.576 nm. In benzene pentamer (Fig. 4) the dihe-
dral angles range from 32 to 95° and the intermolecular
distances range from 0.50 to 0.57 nm. All the other di-
hedral angles and intermolecular distances in benzene

hexamer (Fig. 5), septamer (Fig. 6) also agree with
the published results .37

From Fig. 1, the configuration of the dimer is not a
para]lel arrangement, nor a T-arrangement. Previous
studies showed that the calculated structure of dimer
might be very sensitive to the applied point charge distri-
bution.® Tt was found that point charges smaller than
0.13e resulted in essentially parallel displaced configu-
rations, while larger charges ( =~0.17¢) resulted in T-
shaped configurations .

Conclusion

In this paper, a modified genetic algorithm with a
local minimization procedure (MGALM) was designed to
perform structural optimizations on small benzene clusters
((CgHg) y N =2—7). The results of test functions us-
ing MGA showed that it was more efficient than SGA.
With the tailored genetic operators, our MGAIM suc-
cessfully located all the currently accepted global minima
for these clusters and the results of MGALM presented
above can be viewed as analogous to those of the parallel
genetic algorithm. The results showed that this algorithm
is efficient and practical, it is hopeful to become a reli-
able means of performing geometry optimizations in a
wide variety of chemical systems.
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